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Complex industrial applications of raopotic manipulators are beyond the capabilities or the reilatively
simpie constant-gain linear control systems commonly used for current industrial manipylators. They
compensate poorly for the nonlinear dynamic characteristics of manipulators and environmental changes.
This paper presents the development of an adaptive control algorithm wnich adjusts, in real time, the
contral system parameters to compensate for manipulator nonlinear characteristics and changes in its
environment and payload. Experimental results are also presented for two devices which show that the
algoritim is practical and capadble of producing significantly improved systems dynamic performance.

Introdyction

Current commercial manipylators use relatively
simple constant gain linear feedback control
systems. dhile such control systems are reliable
and easy implement and design, their
performance is rather limited. They compensate

with full nonlinear dynamics [Bobrow, Dubowsky
and Gibson, 1983]. An important aspect of the
above contral approaches is that they require
accurate dynamic models of the manipylator which

are often difficylt to obtain. A minipylator's
poorly for the nonlinear manipuliator character dynamic behavior will vary over time due t0 such

and are sensitive 1t envirommental changes, factors as varaiable joint friction and payload
mechanical flexidbility and actuator limitations, mass.
Hence, many complex industrial applications are

beyond the capabilities of current industrial
robotic manipulators _National Reseach Council].

A key to improved manipulator performance is the
development of better control algorithms. [n
recent years, researchers have proposed 3 number
af control methods that may sufstantially {mprave
system performance. However, their value s
aimost always demonstrated analytically or by
simulation, and only for idealized systems that
may fail to consider i{mportant systems factors
which limit and degrade control system
performance. These factors include mantpulator
friction, sensor noise, unknown System parametars
and disturdances. {n this paper an adaptive
control algorithm for the motion control of
ropotic manipylators is presented which has been
shown Dy simylation to signficantly improve
system performance. Experimental results are
presented which demonstrate the value of the
algorithm on a laboratory robotic device and a
commercial manipulator systesm.
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Many of the agproaches suggested for improved
motion control are based on explicit
representations of the manipulator's nonlinear
dynamics used in g3 feedforward manner [Raibert
and Horn,19781.Linear feedback {s provided to
compensate for model errors and disturbances.
Nonlinear feedback control laws have alsa been
proposed (Freund, 1982; Luh, Walker and Paul
1980]. Optimal control theory has been applied

Adaptive control techniques have bleen prapased
which attempt to  adjust control system
characteristics to compensate far changing
dynamic properties based on measured performance
rather than a detailed knowledge of the
manipulator dynamics. Within adaptive control
there are two fundamental approaches. The first
fs Learning Model Adaptive Control (LMAC), in
which an improved model of the manipulator is
obtained by on-line parameter identification
techniques [Kaivo ana Guo,1983), and is then used
in the feeddack contral of manipulators. The
second approach is called Model Referenced
Adaptive (Control (MRAC). The controller is
adjusted so that the closed loop bDenavior of a
system matches that of a preseiected model
according to some criterion [Landau, 1974]. [t
is possible to have adaptation schemes which
emplay aspects of both approaches [Ledorgne,
[barra, and Espiay 1981].

The manipylator model assumed in an adaptive
control approach may range from a relatively
simple linear uncoupled differential egquation
(Oubowsky and DesForges, 1979; Xoivo, 1983] to
more compiex models of the manipulator dynamics
[Vukobratovic and Kiracanski, 1982]. For nign
speed manipylator motion or control in task space
there may be significant dynamic coupling between
the joints which suggest mult-input-multi-oytput
(MIMO) approaches ?Takegaki and Arimoto, 1981].
However, studies nave found that uncoupled
single-input-single-output (SISO) algorithms can
handle dynamic interaction without significant

linearized  manipulator  models [Kann and performance degradation (Koive and Guo, 1983;
Roth,1971], and more recently to manipulators LeBorgne, Ibarra and Espiau, 1981]. Adaptive
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algorithms have been proposed for manipulator
control wnich employ non-adaptive nonlinear
control in addition %0 adaptation {Lee, Ching and
Lee, 1984], .

MRAC algorithms can be developed in saveral ways.
One common approach relies on a global stapility
theorem, such as Popov's Hyperstadility Theorem.
(Horowitz and Tomizuka, 1980]. Some MRAC
algorithms, based on this approach, are unstadle
in practical applications due %0 ummodelled
nigher order dynamics and sensor noise [Rhors,
1983]. {n this work MIMO algorithms are
deveioped by applying the method of Steepest
Descent to minimizing a cost function of the
error bDetween the model and the systeam.

Analytical Development

The manipylator dynamics, including its control,
can be descridbed by the nonlinear differential
equation;

x=fl(x, 3 r,d (1)
where x is the system state vector{xy,...x,),
3 {s a system parameter vector(s ,...3 ),
r is the input vector(r,,...ry ), and ™
4 is a disturdbance vectBr(_g, ....&).

The 3 vector is a function of x, and the coatrol
matrix, K{t), which is adjusted by the adaptive
algorittm. The model state equation for the
system to track is written as:

L* £ ¢ a ) (2)

where Y is the model state vector{yj,...y, ) and

2 is a model parameter vectorla,....am).
The error Detween the response of the model and
the system is defineq by the vector:

e(t) = y(e) - x(t) (3)

The objective of the algorithm is to manipulate
K(t), and hence z, {n such a way as to drive e(t)
to zero, and therepy match the system response t0
that of the model (f{.e. a = 3), neglecting
unmodeiled disturdbances. The development uses
the method of Sensitivity-Steepest Oescent
[Donaison and Leondes, 1963; Brogan, 1974].
This method uses the parameters of the mode!
rather than the system. Hence, {t f{s
computationaily less burdensome than wmethods
which evaluate complex, nonlinear models. [t has
also been shown t0 have very good noise rejection
properties [Papadopoulos, 19831,

In this method, a scalar cost function s
formulated as:

Vie) = 1/2 e/ ge (&)

where § is called the adaptive gain matirx. The
change of a2 in time, such that V(e) moves along

the steepest descent path to a sinimumm {s given
by: T

. v e

gk gtk g 2 (s)

where 3¢/3a is an n by m matrix whose 1,] element

-A3~

is  3e;/3a; Q IS an n by n symmetric matrix, and
k is a positive scalar quantity. Howaver, the
partial derivative 3a/3a in equation (5) cannot
in general be caldylated [Oonaison, 1963;
Dubowsky  and  DesForges, 1979]. [t is
approximated as follows:

ie ayme) -3 3y

— B e 3 w3 A

=T TR e T R &

The nby m matrix A, called the sensitivity
matarix, can be obtained from the partial
derivative of equation (2) with respect t0 a as

follows:
3y i, I
o T2 =+ =2 (7)
ia ay, 33 a

Assyming that 3y/aa = d(3ysaal/de and

substituting the definition of A from equation

(6) into equation (7) yields the matrix
sensitivity equation:
af af
. T L
A= _..51 A+ —31 (8)

The adaption law, eguation {S), can be written:
a = -k AT Qe(t) (9)

V(e) has the appearance of a Lyapunov function
and  (Papdopoulos, 1983; Brogan 1974] have
suggested that this fact can de used to show that
the method leads to a stable design. The
stabflity of the method has been investigated for
the continuous time case [Dubowsky and DesForges,
1979] and the discrete time case, including the
effects of computational delays [Dubowsky, 1981].

Given 3, from equation (9), and assuming that the
unknown parameters of the system change slowly,
it is possiibe to solve for the time rate of
change of the control gains required to satisfy
equation (9), as seen in the following
applicaion. A Ddlock diagram, Fig. 1,
illustrates the adbove algoritmm.

Consider the two degree-of-freedom  robotic
positioning device shown in Fig. 2. The closed
Toop system state equation,(l), for this device
can be written as:

x = A(x)x +B(x)r + c(x)d {10)

where
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and XysXy:X3 and X4 are equal to 818,80,  and
g2 nsmt?voly. The a.(x) 0 cp(;) terms are
nonl inear functions of the state of the systems
and the payload it carries. Among other factors,
they mode! the effects of the inter-axis dynamic
coupling Joint friction and changing inertia due



to payload and system jeometry. X~ Is a two Dy
" twd Matrix with elements keij and x is a two Dy
four control gain matrix with elements Kyij To
provide unity position  feedback Kr|1 was set
equal 0 Kxj7 and Kr22 equal O kyp3- The
unknown parameter vector for the system becomes:
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The mode! selected {s that of a linear constant
coefficient dynamic system, or:
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Choosing 31, 34, 35 and 36 to be zero, the model
becomes uncoupled. The model has zero elements
in locations where the system does not, due 0
its assumed decoupled structure, One of the
tasks of the adaptive algorithm is to change the
k.'sand k'S as a function of time SO as to make

ese terms approach zero, while making the other
terms approximate the selected model constants.
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Fig. 1. MIMO Adaptive Algorithm.

It is not always possible to do this exactly, but
only in a manner in wnich ¥(e) will De minimized.
The vector of seiected model parameters is

2= (3, 3,. 350 2,0 350 35, 3,50 ga]T (13)
Using equation (12) to evaluate eguation (8)

results {in the following matrix sensitivity
equation:
0ot 0o e 0 o0 o0 o0 0 o O
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The response of the model from the solution of
equation (12), to any input becomes the forcing
terms {n equation (14). The solution of equation
(14} yields a{t) wnich can be used in equation
(9) with the measured errors to find 3(t). The
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final task in the appifcation of the algoritim (s

o calculate the <,(t) wnich will produce the
desired a(t).
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Fig. 2. Two Degree of Freedom Robotic Positioning
Device.

Following [Donalson and Leondes, 1963], it is
dssumed that the parameters of the system, the
a's’, change slowly as compared to the adaption
process. [t has DbDeen shown that while this
assumeption is useful in developing this form of
adaptive algorittm, 1in practice, it is not
necessary for adequate performance of the
algorithm [Dubowsky and Desforges, 1979]. uith
this assumption and the assumption that the
adaptive algorithm causes the system parameters
to remain close to the model, differentiating
(11) yieldas:
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These equations can be integrated forward in time
to obtain the time varying feeddack gains for the
system which allows it to follow the benavior of
the selected model.

The algorithm equatfons were put in discrate form
for digital computer impiementation as described
in (Dubowsky, 1981]. Additional simplificiations
to the algorithm were made for use in the
experimental studies. The dynamic cowling
between joints was neglectad and simple viscous
damping was assumed as each joint. The
controller at each jaint provides Proportional
plus Derivative (PD) control. Following the same
procedure a Proportional [ntegral DOerivative
(PID) MRAC was also developed. The PID structure
used was the “POF* type {[Phelan, 1977]. In the
experimental algorittms Q was chosen so that
there were no cCoupled terms in V(e) and hence
only two adaptive gains needed to be considered
for each joint. These gains were gpi and gvi.
The elements of Q can be written as comdinations
of these two.



Ziperiments and Simyiations

The algorithms w~ere tested on two different
devices. One was a °wo degree-of freedom rotary
positioning device {see Fig. 2). The other was
4 PUMA 300 ropotic manipylator (manufactured Dy
ynimation inc., see Fig. 3). The two systems
are quite similar. doth have geared revglute
joints driven by 3C servo-motors wnicn  are
powered by current sgurce analog ampiifiers. The
dynamic  properties 3f 9oth  Systems  were
decermined from aynamic tests. 3lso, doth yse
ootical encaders mountag on the motor smafts to
provide position ana velocity information. The
encoder Jutouts dre cassed T 4 circyit whicnh
converts the encader pulses to 4a Ssixtaen-oit
positon count for cthe control computer. The
amplifiers are ccommanged ysing an  2ignt-pit
digital signal tnrough a D/A converter, A
POP-11/23 minicomputar is used to control the two
DOF positianing device. The 2UMA was controlled
#ith an [ntel 3086 wicorprocessor witn an 3087
floating noint processor, in conjuction with an
intel [CE 30 development system.

The cantrol software for the positioning device
was programmed in MACROQ-1l assemdly lanquage for
fast execution. The sampling times for the
experiments were Sms for the PD MRAC and "ms for
the PID MRAC algorithms. For tests in which the
two axes were run simyltaneously, the sampling
times ~ere twice 3s long. The PUMA algorithms
were programmed in PLMB6 and <hen assemoled into
3086 assemoly lanquage. The P00 MRAC algoritm
required 2.Jms for axecution, and tne P{D form
required 4.4ms. 3oth systems used reference
models with a banawidtn of 10 rad/sec for PD
control, The model D>andawidth was selected o
etiminate any performance degradations due to
sampling time and accyator ampiifier saturation.
The PIJ) mogel w~as =nirg order and <as chosen to
have 1% oversnoot ana the same satyration step
size as tne PO moagel.
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Fig. 3. PUMA Roootic Manioulatar.
Simulations of both the table and the robot under
adaptive control were run in conjunction with the
experimental work. The dynamic model 3f Soth the
table and the robot were derived assuming rigid
links using Lagrange's formulation.

Experimental and Simylation Resy!

The gains used for the adaptation mechanism, the
Q matrix, were bounded by stapility analysis.
This analysis was also helpful in selecting the
values for good performance. Then simulations

ind ne 2xoer'mental system itselif «ere ysed to
optimize the aljorithm's performance.

Fig., 4 shows oxperimentally measured faedback
gains adaoting for several sets of idaptive
gains. [nitially cthe value of tne oposition
feeaback gain, for 2,, k ,,) is 5 times lower
than that requiredq £0 matcn Y%% model. Even for
the relatively wide range af 3§ values, tne
idagtation can je saen to %e Juite well benaved.
n a1l three casas l(Z’ is close ta its final
adaoted value defore the second corner of the
profile occurs. The zosition and velocity errors
=ere reduced Dy in oraer of magnitude aftar the
first c¢ycle. The g3ains in Fig. 4 do nat
converge t0 orecisely <the same value ana
oscillate about the iverage value. This effect
is due to the n7oniinearities in the physical
system, such as friction.
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As «ith nearly all adaptive algorithms, the
dynamics of the iadaotive mechanism are fynctions
of tne initial narametar errors and the input.
This algoritnm is not sery sensitive to the
intial parameta2r error as cian de seen in Fig. 5.
Here, widely 4giffering initial gains are useq
rasulting in very different initial  dynamic
oaramertars, The idaotation of the position jain
apoears uniforn in shape angd speed.
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The 3daptation sensitivity of the system to the
input's form ang magnitude was also investigated.
The magnitude of the input can have a substantial
effect on the adaptation performance. As shown
in Fig. 6, decreasing the input step size, H, by
a factor of two slows adaptation significantly.
This effect can be-elminated by normaiizing Q to
the magnitude of the input. Our experimental and
simulation resuits also confirm that the gains
can be normalized for a ramp input as well. The
sensitivity to the form of the input is more of 3
proplem. This is fundamental to adaptive
control. To overcome this proplem the use of
special learning signals has been suggested
[Oubowsky and Desforges.1979]. Since many
trajectory planners use low order polynomials and
ramps for position reference inputs, it may also
be possidble to normalize Q for these functions.
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Fig. 6. Effect of input magnitude and Normaliza-
tion on the asaptation of joint-2 with
step command profile.

After selecting the values for Q, the
experimental system was uysed to test the
performance of the device under rather extreme
conditions. Fig.7 snows an example of the
performance of the Al axis when a large payload
was added causing the effective inertia of the
axis to quadruple. Using feeddack gains set for
the device with no payload, a large oversnhoot in
the system response resulits. This response s
quite different from the reference model which
has been selected to be criticially damped. The
system response has deen clearly degraded. The
ddaptive control enadles the system %0 conform €0
the model by the end of the Ffirst step. A
similar case for a ramp ingut is shown in Fig.
8. Here the performance of the system with
adaotation is corrected before the first dwell is
reached.
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Fig. 7. PD control for joint-2 (with an added
payload).
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Fig. 8. PD control for joint-2 (ramp command
orofile) with a payload added.

Fig.'s 8 and 9 are for the motion of a single
axis, For many rodotic systems (cartesian
designs being a notable exception) the dynamics
of each axis are highly couvled. This fact is
trye even for the relatively simple two D0OOF
System used in these tests. To experimentally
investigate ¢the adaptive control algorithm's
apility to tolerate and compensate for this
coupling, a test case was run in which axis | was
mounted vertically and a payload dar with weignts
4t 2ach end was mounted on %0 axis 2; with the
Bar initally vertical (the minimum inertia
configyration for joint 1). Joint 2 was
Conmanded to move the payload bar to a horizontal
position (the maximum inertia configuration for
joint 1) with a ramp profile. At the same time
joint 1 was zommanded to follow a ramp profile
with an amplitude of .S5rad at .S5rad/s. Ouring
this maneyver the affective inertia varies from a
minimum to a maximum sinusoidally. Fig. 9 snows
the performance for this axis. Without
adaptation significant overshoot can be seen
while the response with adaption closely follows
the modgel. The maximum position error hDetween
the system ang the model is 2 1/2 times larger
for the nonadaptive case. At the same time the
Il axis is adaoting, tne A2 axis is adapting for
the idded payicad. The response for this axis is
nearly identical to the single axis resylt snhown
in Fig. 8. The error Detween the system ana the
model for the 32 axis fs shown in Fig. 10. Fig.
11 snows simulation resuylts for this case.
Comparing these results Fig. 9 clearly shows the
apility of the simulation to predict the
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Fig. 9. Experimental performance PO control of
joint-2 for multi-axis test case.




experimental resuits wnen it 15 Dased on
accurately measured data.
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fig. 10. PD control on joint-2 for multi-axis
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Fig. 11. Simulation serformance of PO control on
joint-1 for multi-axis test case.

inmodelled disturbances, such as gravity and
Jjoint friction, can deqgrade manipulator
performance. I[n the above experimental results
the joint friction was modeiled and uysad as a
dynamic feedforward signal. However, it is not
always possible tg accurately compensate for
joint frigction. [ntegral adaptive control, the
P1D algoritnm, was investigated as an alternative
to the feedfoward approach. Fig 12 shows the
performance of the PD MRAC without friction
compensation as it is used to adaot to a payload
change. A large steady state error resylts,
Fig. 13 shows the same case with P[0 control.
This performance closely matches the model,
having no steady state error as well as a faster
settling time. [t would appear that this form of
adaptive control offers significant advantages in
cases where joint friction is difficult to model.

Fig. 14 shows the resyit of gravitational
disturdances. Here a very large uynpalanced
payload was attached to axis 2 and axis 1 was
tilted so that gravity applied a large varying
disturbance to axis 2. Joint 2 was then
commanded to move from bottom dead center with a
step input. This performance shows serious
degradation caused Dy the disturbance for both
the adapting and nonadaoting cases. [n Fig. 15
the same test is performed .with the adaptive PID
contraller and the errar {s dramaticaly reduced.
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Fig. 14. PO control of joint-2 with unbalanced
weight.

The MRAC algorithm was also implemented on the
PUMA robotic manipylator. This work was done
with the technical cooperation and support of the
destingnouse Corporation, Defense Systams Center,
Baltimore, Maryland. The objectlive was to
detarmine if the properties of commercial quality
systems, such as gear train backlash, would
degrade the performance of the MRAC algorithm.
Many of the tests performed on the two DOF device
were repeated using the PUMA with very similar
results. The motors af the PUMA operats through
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very high gear ratios and therefore the effects
of friction were relatively smail. Hence, no
friction compensation was needed.

a3 .8 .8

18 TIME (vems &8
Fig. 15. POF control of joint-2 with unbalance
weignt.

Fig. 16a shows the response of the PUMA 3, axis
when it matches a .707 aof critically damped
reference modei. Fig. 160 shows the  axis
response to a step command profile withoyt
adaptive control, when the feedback gains are set
low. For this straight out and horizontal
configuration of the manipulator, tne response is
quite underdamped and does not match the model
well. In Fig. 16c the adaptive control is
enabled and the response converges to that of the
model. [n this case the adaptation gains, Q,
nave been intentionally set quite low so that the
changing system response could be abserved. The
adapting position gain is snown in Fig. 17. The
adaptive gains could easily be adjusted so that
virtyally no differences detween the system and
the model can be seen |, even on the first step.
Fig. 18 shows the adapting gains for such a
case. Here the initial position gain is lowered
by a factor of nearly 6. B8y the first dwell Ddoth
gains are nearly at their steady state values.
Similar results have been demonstrated for cases
where the initial feedbackx gJains were set too

hign. The gJains were reduced smoothly and
quickly. OQther cases were done in which the
manipulator adapted for changes in its

configuration and payload. Payloads of up 0
l0kg were used which drastically degraded the
perfarmance of the system without adaptive
control. The feedback gains were lowered and
raised by the adaptive algorithm, as reguired ¢t
match the system performance to its model.

Conclusions

This paper has shown that an adaptive control
algorithm can signficantly improve the
performance of robotic manipylators over that

obtained ysing conventional control. The
experimental results demonstrate that the
algorithm is practical for the control of

commercial quality manipulators with relatively
modest contral computars. [t has also been shown
that disturbances such as joint friction and
gravity, can degraded the performance of
manipulator systems and should be considered in
the development of their control systems.
Results have been shom which demonstrate that
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Fig. 18. PUMA fast gain adaptation.

these disturbances can be effectively compensated -
for using an integral adaptive control algorithm. .= -
It has also shown that simulations can bDe an

effective aid in the design of manipulator




controls wnen they are used in concert with
experimental studies and Dbased on accurately
measured system parameters,
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